A note on the CLT of the LSS for sample covariance matrix from a spiked population model

نویسندگان

  • Qinwen Wang
  • Jack W. Silverstein
  • Jian-Feng Yao
چکیده

Abstract: In this note, we establish an asymptotic expansion for the centering parameter appearing in the central limit theorems for linear spectral statistic of large-dimensional sample covariance matrices when the population has a spiked covariance structure. As an application, we provide an asymptotic power function for the corrected likelihood ratio statistic for testing the presence of spike eigenvalues in the population covariance matrix. This result generalizes an existing formula from the literature where only one simple spike exists.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On sample eigenvalues in a generalized spiked population model

In the spiked population model introduced by Johnstone [11], the population covariance matrix has all its eigenvalues equal to unit except for a few fixed eigenvalues (spikes). The question is to quantify the effect of the perturbation caused by the spike eigenvalues. Baik and Silverstein [5] establishes the almost sure limits of the extreme sample eigenvalues associated to the spike eigenvalue...

متن کامل

Sharp Detection in Pca under Correlations: All Eigenvalues Matter

Principal component analysis (PCA) is a widely used method for dimension reduction. In high dimensional data, the “signal” eigenvalues corresponding to weak principal components (PCs) do not necessarily separate from the bulk of the “noise” eigenvalues. Therefore, popular tests based on the largest eigenvalue have little power to detect weak PCs. In the special case of the spiked model, certain...

متن کامل

Asymptotic joint distribution of extreme eigenvalues and trace of large sample covariance matrix in a generalized spiked population model

Abstract: This paper studies the joint limiting behavior of extreme eigenvalues and trace of large sample covariance matrix in a generalized spiked population model, where the asymptotic regime is such that the dimension and sample size grow proportionally. The form of the joint limiting distribution is applied to conduct Johnson-Graybill-type tests, a family of approaches testing for signals i...

متن کامل

Limit Theorems for Sample Eigenvalues in a Generalized Spiked Population Model

In the spiked population model introduced by Johnstone [10], the population covariance matrix has all its eigenvalues equal to unit except for a few fixed eigenvalues (spikes). The question is to quantify the effect of the perturbation caused by the spike eigenvalues. Baik and Silverstein [6] establishes the almost sure limits of the extreme sample eigenvalues associated to the spike eigenvalue...

متن کامل

High Dimensional Correlation Matrices: CLT and Its Applications

Statistical inferences for sample correlation matrices are important in high dimensional data analysis. Motivated by this, this paper establishes a new central limit theorem (CLT) for a linear spectral statistic (LSS) of high dimensional sample correlation matrices for the case where the dimension p and the sample size n are comparable. This result is of independent interest in large dimensiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Multivariate Analysis

دوره 130  شماره 

صفحات  -

تاریخ انتشار 2014